\(\int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^3} \, dx\) [549]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 241 \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^3} \, dx=-\frac {\sqrt {\frac {2}{3}} \text {arctanh}\left (\frac {\sqrt {\frac {3}{2}} \cos (e+f x)}{\sqrt {3+3 \sin (e+f x)}}\right )}{(c-d)^3 f}+\frac {\sqrt {d} \left (15 c^2+10 c d+7 d^2\right ) \text {arctanh}\left (\frac {\sqrt {3} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {3+3 \sin (e+f x)}}\right )}{4 \sqrt {3} (c-d)^3 (c+d)^{5/2} f}+\frac {d \cos (e+f x)}{2 \left (c^2-d^2\right ) f \sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^2}+\frac {d (7 c+d) \cos (e+f x)}{4 \left (c^2-d^2\right )^2 f \sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))} \]

[Out]

-arctanh(1/2*cos(f*x+e)*a^(1/2)*2^(1/2)/(a+a*sin(f*x+e))^(1/2))*2^(1/2)/(c-d)^3/f/a^(1/2)+1/4*(15*c^2+10*c*d+7
*d^2)*arctanh(cos(f*x+e)*a^(1/2)*d^(1/2)/(c+d)^(1/2)/(a+a*sin(f*x+e))^(1/2))*d^(1/2)/(c-d)^3/(c+d)^(5/2)/f/a^(
1/2)+1/2*d*cos(f*x+e)/(c^2-d^2)/f/(c+d*sin(f*x+e))^2/(a+a*sin(f*x+e))^(1/2)+1/4*d*(7*c+d)*cos(f*x+e)/(c^2-d^2)
^2/f/(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.02, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {2858, 3063, 3064, 2728, 212, 2852, 214} \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^3} \, dx=\frac {\sqrt {d} \left (15 c^2+10 c d+7 d^2\right ) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a}}\right )}{4 \sqrt {a} f (c-d)^3 (c+d)^{5/2}}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f (c-d)^3}+\frac {d (7 c+d) \cos (e+f x)}{4 f \left (c^2-d^2\right )^2 \sqrt {a \sin (e+f x)+a} (c+d \sin (e+f x))}+\frac {d \cos (e+f x)}{2 f \left (c^2-d^2\right ) \sqrt {a \sin (e+f x)+a} (c+d \sin (e+f x))^2} \]

[In]

Int[1/(Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x])^3),x]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*(c - d)^3*f)) + (Sqrt[
d]*(15*c^2 + 10*c*d + 7*d^2)*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(
4*Sqrt[a]*(c - d)^3*(c + d)^(5/2)*f) + (d*Cos[e + f*x])/(2*(c^2 - d^2)*f*Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e
 + f*x])^2) + (d*(7*c + d)*Cos[e + f*x])/(4*(c^2 - d^2)^2*f*Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x]))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2858

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] - Dist[
1/(2*b*(n + 1)*(c^2 - d^2)), Int[(c + d*Sin[e + f*x])^(n + 1)*(Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e
+ f*x], x]/Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
 b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 3063

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 3064

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {d \cos (e+f x)}{2 \left (c^2-d^2\right ) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^2}+\frac {\int \frac {a (4 c+d)-3 a d \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^2} \, dx}{4 a \left (c^2-d^2\right )} \\ & = \frac {d \cos (e+f x)}{2 \left (c^2-d^2\right ) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^2}+\frac {d (7 c+d) \cos (e+f x)}{4 \left (c^2-d^2\right )^2 f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))}-\frac {\int \frac {-\frac {1}{2} a^2 \left (8 c^2+9 c d+7 d^2\right )+\frac {1}{2} a^2 d (7 c+d) \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx}{4 a^2 \left (c^2-d^2\right )^2} \\ & = \frac {d \cos (e+f x)}{2 \left (c^2-d^2\right ) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^2}+\frac {d (7 c+d) \cos (e+f x)}{4 \left (c^2-d^2\right )^2 f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))}+\frac {\int \frac {1}{\sqrt {a+a \sin (e+f x)}} \, dx}{(c-d)^3}-\frac {\left (d \left (15 c^2+10 c d+7 d^2\right )\right ) \int \frac {\sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{8 a (c-d)^3 (c+d)^2} \\ & = \frac {d \cos (e+f x)}{2 \left (c^2-d^2\right ) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^2}+\frac {d (7 c+d) \cos (e+f x)}{4 \left (c^2-d^2\right )^2 f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))}-\frac {2 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{(c-d)^3 f}+\frac {\left (d \left (15 c^2+10 c d+7 d^2\right )\right ) \text {Subst}\left (\int \frac {1}{a c+a d-d x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{4 (c-d)^3 (c+d)^2 f} \\ & = -\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} (c-d)^3 f}+\frac {\sqrt {d} \left (15 c^2+10 c d+7 d^2\right ) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{4 \sqrt {a} (c-d)^3 (c+d)^{5/2} f}+\frac {d \cos (e+f x)}{2 \left (c^2-d^2\right ) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^2}+\frac {d (7 c+d) \cos (e+f x)}{4 \left (c^2-d^2\right )^2 f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 4.57 (sec) , antiderivative size = 779, normalized size of antiderivative = 3.23 \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^3} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\frac {(32+32 i) (-1)^{3/4} \text {arctanh}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right )}{(c-d)^3}+\frac {\sqrt {d} \left (15 c^2+10 c d+7 d^2\right ) \left (e+f x-2 \log \left (\sec ^2\left (\frac {1}{4} (e+f x)\right )\right )+\text {RootSum}\left [c+4 d \text {$\#$1}+2 c \text {$\#$1}^2-4 d \text {$\#$1}^3+c \text {$\#$1}^4\&,\frac {-d \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )+\sqrt {d} \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-c \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}+2 \sqrt {d} \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}+3 d \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2-\sqrt {d} \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2-c \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^3}{-d-c \text {$\#$1}+3 d \text {$\#$1}^2-c \text {$\#$1}^3}\&\right ]\right )}{(c-d)^3 (c+d)^{5/2}}+\frac {\sqrt {d} \left (15 c^2+10 c d+7 d^2\right ) \left (e+f x-2 \log \left (\sec ^2\left (\frac {1}{4} (e+f x)\right )\right )+\text {RootSum}\left [c+4 d \text {$\#$1}+2 c \text {$\#$1}^2-4 d \text {$\#$1}^3+c \text {$\#$1}^4\&,\frac {-d \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-\sqrt {d} \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-c \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}-2 \sqrt {d} \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}+3 d \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2+\sqrt {d} \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2-c \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^3}{-d-c \text {$\#$1}+3 d \text {$\#$1}^2-c \text {$\#$1}^3}\&\right ]\right )}{(-c+d)^3 (c+d)^{5/2}}+\frac {8 d \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )}{(c-d) (c+d) (c+d \sin (e+f x))^2}+\frac {4 d (7 c+d) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )}{(c-d)^2 (c+d)^2 (c+d \sin (e+f x))}\right )}{16 \sqrt {3} f \sqrt {1+\sin (e+f x)}} \]

[In]

Integrate[1/(Sqrt[3 + 3*Sin[e + f*x]]*(c + d*Sin[e + f*x])^3),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(((32 + 32*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(e +
f*x)/4])])/(c - d)^3 + (Sqrt[d]*(15*c^2 + 10*c*d + 7*d^2)*(e + f*x - 2*Log[Sec[(e + f*x)/4]^2] + RootSum[c + 4
*d*#1 + 2*c*#1^2 - 4*d*#1^3 + c*#1^4 & , (-(d*Log[-#1 + Tan[(e + f*x)/4]]) + Sqrt[d]*Sqrt[c + d]*Log[-#1 + Tan
[(e + f*x)/4]] - c*Log[-#1 + Tan[(e + f*x)/4]]*#1 + 2*Sqrt[d]*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]]*#1 + 3*d
*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 - Sqrt[d]*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 - c*Log[-#1 + Tan[(e
+ f*x)/4]]*#1^3)/(-d - c*#1 + 3*d*#1^2 - c*#1^3) & ]))/((c - d)^3*(c + d)^(5/2)) + (Sqrt[d]*(15*c^2 + 10*c*d +
 7*d^2)*(e + f*x - 2*Log[Sec[(e + f*x)/4]^2] + RootSum[c + 4*d*#1 + 2*c*#1^2 - 4*d*#1^3 + c*#1^4 & , (-(d*Log[
-#1 + Tan[(e + f*x)/4]]) - Sqrt[d]*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]] - c*Log[-#1 + Tan[(e + f*x)/4]]*#1
- 2*Sqrt[d]*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]]*#1 + 3*d*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 + Sqrt[d]*Sqrt[c
 + d]*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 - c*Log[-#1 + Tan[(e + f*x)/4]]*#1^3)/(-d - c*#1 + 3*d*#1^2 - c*#1^3) &
 ]))/((-c + d)^3*(c + d)^(5/2)) + (8*d*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]))/((c - d)*(c + d)*(c + d*Sin[e +
f*x])^2) + (4*d*(7*c + d)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]))/((c - d)^2*(c + d)^2*(c + d*Sin[e + f*x]))))/
(16*Sqrt[3]*f*Sqrt[1 + Sin[e + f*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1065\) vs. \(2(214)=428\).

Time = 1.45 (sec) , antiderivative size = 1066, normalized size of antiderivative = 4.42

method result size
default \(\text {Expression too large to display}\) \(1066\)

[In]

int(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^3,x,method=_RETURNVERBOSE)

[Out]

-1/4*(4*2^(1/2)*arctanh(1/2*(-a*(sin(f*x+e)-1))^(1/2)*2^(1/2)/a^(1/2))*(a*(c+d)*d)^(1/2)*sin(f*x+e)^2*a^5*c^2*
d^2+8*2^(1/2)*arctanh(1/2*(-a*(sin(f*x+e)-1))^(1/2)*2^(1/2)/a^(1/2))*(a*(c+d)*d)^(1/2)*sin(f*x+e)^2*a^5*c*d^3+
8*2^(1/2)*arctanh(1/2*(-a*(sin(f*x+e)-1))^(1/2)*2^(1/2)/a^(1/2))*(a*(c+d)*d)^(1/2)*sin(f*x+e)*a^5*c^3*d+16*2^(
1/2)*arctanh(1/2*(-a*(sin(f*x+e)-1))^(1/2)*2^(1/2)/a^(1/2))*(a*(c+d)*d)^(1/2)*sin(f*x+e)*a^5*c^2*d^2+8*2^(1/2)
*arctanh(1/2*(-a*(sin(f*x+e)-1))^(1/2)*2^(1/2)/a^(1/2))*(a*(c+d)*d)^(1/2)*sin(f*x+e)*a^5*c*d^3+8*2^(1/2)*arcta
nh(1/2*(-a*(sin(f*x+e)-1))^(1/2)*2^(1/2)/a^(1/2))*(a*(c+d)*d)^(1/2)*a^5*c^3*d+4*2^(1/2)*arctanh(1/2*(-a*(sin(f
*x+e)-1))^(1/2)*2^(1/2)/a^(1/2))*(a*(c+d)*d)^(1/2)*a^5*c^2*d^2+4*2^(1/2)*arctanh(1/2*(-a*(sin(f*x+e)-1))^(1/2)
*2^(1/2)/a^(1/2))*(a*(c+d)*d)^(1/2)*sin(f*x+e)^2*a^5*d^4-15*a^(11/2)*arctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c
+d)*d)^(1/2))*c^4*d-10*a^(11/2)*arctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*c^3*d^2-7*a^(11/2)*arct
anh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*c^2*d^3-a^(9/2)*(-a*(sin(f*x+e)-1))^(1/2)*(a*(c+d)*d)^(1/2)
*d^4-a^(7/2)*(-a*(sin(f*x+e)-1))^(3/2)*(a*(c+d)*d)^(1/2)*d^4+4*2^(1/2)*arctanh(1/2*(-a*(sin(f*x+e)-1))^(1/2)*2
^(1/2)/a^(1/2))*(a*(c+d)*d)^(1/2)*a^5*c^4-15*a^(11/2)*arctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*s
in(f*x+e)^2*c^2*d^3-10*a^(11/2)*arctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*sin(f*x+e)^2*c*d^4-30*a
^(11/2)*arctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*sin(f*x+e)*c^3*d^2-20*a^(11/2)*arctanh((-a*(sin
(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*sin(f*x+e)*c^2*d^3-14*a^(11/2)*arctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(
c+d)*d)^(1/2))*sin(f*x+e)*c*d^4-9*a^(9/2)*(-a*(sin(f*x+e)-1))^(1/2)*(a*(c+d)*d)^(1/2)*c^3*d+a^(9/2)*(-a*(sin(f
*x+e)-1))^(1/2)*(a*(c+d)*d)^(1/2)*c^2*d^2+9*a^(9/2)*(-a*(sin(f*x+e)-1))^(1/2)*(a*(c+d)*d)^(1/2)*c*d^3+7*a^(7/2
)*(-a*(sin(f*x+e)-1))^(3/2)*(a*(c+d)*d)^(1/2)*c^2*d^2-6*a^(7/2)*(-a*(sin(f*x+e)-1))^(3/2)*(a*(c+d)*d)^(1/2)*c*
d^3-7*a^(11/2)*arctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*sin(f*x+e)^2*d^5)*(-a*(sin(f*x+e)-1))^(1
/2)*(sin(f*x+e)+1)/a^(11/2)/(a*(c+d)*d)^(1/2)/(c+d*sin(f*x+e))^2/(c+d)^2/(c-d)^3/cos(f*x+e)/(a+a*sin(f*x+e))^(
1/2)/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1309 vs. \(2 (214) = 428\).

Time = 0.73 (sec) , antiderivative size = 2903, normalized size of antiderivative = 12.05 \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^3} \, dx=\text {Too large to display} \]

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^3,x, algorithm="fricas")

[Out]

[1/16*((15*a*c^4 + 40*a*c^3*d + 42*a*c^2*d^2 + 24*a*c*d^3 + 7*a*d^4 - (15*a*c^2*d^2 + 10*a*c*d^3 + 7*a*d^4)*co
s(f*x + e)^3 - (30*a*c^3*d + 35*a*c^2*d^2 + 24*a*c*d^3 + 7*a*d^4)*cos(f*x + e)^2 + (15*a*c^4 + 10*a*c^3*d + 22
*a*c^2*d^2 + 10*a*c*d^3 + 7*a*d^4)*cos(f*x + e) + (15*a*c^4 + 40*a*c^3*d + 42*a*c^2*d^2 + 24*a*c*d^3 + 7*a*d^4
 - (15*a*c^2*d^2 + 10*a*c*d^3 + 7*a*d^4)*cos(f*x + e)^2 + 2*(15*a*c^3*d + 10*a*c^2*d^2 + 7*a*c*d^3)*cos(f*x +
e))*sin(f*x + e))*sqrt(d/(a*c + a*d))*log((d^2*cos(f*x + e)^3 - (6*c*d + 7*d^2)*cos(f*x + e)^2 - c^2 - 2*c*d -
 d^2 - 4*((c*d + d^2)*cos(f*x + e)^2 - c^2 - 4*c*d - 3*d^2 - (c^2 + 3*c*d + 2*d^2)*cos(f*x + e) + (c^2 + 4*c*d
 + 3*d^2 + (c*d + d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d/(a*c + a*d)) - (c^2 + 8*c*d
 + 9*d^2)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 + 2*(3*c*d + 4*d^2)*cos(f*x + e))*sin(f*x + e
))/(d^2*cos(f*x + e)^3 + (2*c*d + d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x + e) + (d^2*co
s(f*x + e)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d^2)*sin(f*x + e))) + 8*sqrt(2)*(a*c^4 + 4*a*c^3*d + 6*a*c^2
*d^2 + 4*a*c*d^3 + a*d^4 - (a*c^2*d^2 + 2*a*c*d^3 + a*d^4)*cos(f*x + e)^3 - (2*a*c^3*d + 5*a*c^2*d^2 + 4*a*c*d
^3 + a*d^4)*cos(f*x + e)^2 + (a*c^4 + 2*a*c^3*d + 2*a*c^2*d^2 + 2*a*c*d^3 + a*d^4)*cos(f*x + e) + (a*c^4 + 4*a
*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4 - (a*c^2*d^2 + 2*a*c*d^3 + a*d^4)*cos(f*x + e)^2 + 2*(a*c^3*d + 2*a*c
^2*d^2 + a*c*d^3)*cos(f*x + e))*sin(f*x + e))*log(-(cos(f*x + e)^2 - (cos(f*x + e) - 2)*sin(f*x + e) + 2*sqrt(
2)*sqrt(a*sin(f*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3*cos(f*x + e) + 2)/(cos(f*x + e)^2 -
(cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2))/sqrt(a) - 4*(9*c^3*d - 15*c^2*d^2 + 3*c*d^3 + 3*d^4 + (7*
c^2*d^2 - 6*c*d^3 - d^4)*cos(f*x + e)^2 + (9*c^3*d - 8*c^2*d^2 - 3*c*d^3 + 2*d^4)*cos(f*x + e) - (9*c^3*d - 15
*c^2*d^2 + 3*c*d^3 + 3*d^4 - (7*c^2*d^2 - 6*c*d^3 - d^4)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a))
/((a*c^5*d^2 - a*c^4*d^3 - 2*a*c^3*d^4 + 2*a*c^2*d^5 + a*c*d^6 - a*d^7)*f*cos(f*x + e)^3 + (2*a*c^6*d - a*c^5*
d^2 - 5*a*c^4*d^3 + 2*a*c^3*d^4 + 4*a*c^2*d^5 - a*c*d^6 - a*d^7)*f*cos(f*x + e)^2 - (a*c^7 - a*c^6*d - a*c^5*d
^2 + a*c^4*d^3 - a*c^3*d^4 + a*c^2*d^5 + a*c*d^6 - a*d^7)*f*cos(f*x + e) - (a*c^7 + a*c^6*d - 3*a*c^5*d^2 - 3*
a*c^4*d^3 + 3*a*c^3*d^4 + 3*a*c^2*d^5 - a*c*d^6 - a*d^7)*f + ((a*c^5*d^2 - a*c^4*d^3 - 2*a*c^3*d^4 + 2*a*c^2*d
^5 + a*c*d^6 - a*d^7)*f*cos(f*x + e)^2 - 2*(a*c^6*d - a*c^5*d^2 - 2*a*c^4*d^3 + 2*a*c^3*d^4 + a*c^2*d^5 - a*c*
d^6)*f*cos(f*x + e) - (a*c^7 + a*c^6*d - 3*a*c^5*d^2 - 3*a*c^4*d^3 + 3*a*c^3*d^4 + 3*a*c^2*d^5 - a*c*d^6 - a*d
^7)*f)*sin(f*x + e)), -1/8*((15*a*c^4 + 40*a*c^3*d + 42*a*c^2*d^2 + 24*a*c*d^3 + 7*a*d^4 - (15*a*c^2*d^2 + 10*
a*c*d^3 + 7*a*d^4)*cos(f*x + e)^3 - (30*a*c^3*d + 35*a*c^2*d^2 + 24*a*c*d^3 + 7*a*d^4)*cos(f*x + e)^2 + (15*a*
c^4 + 10*a*c^3*d + 22*a*c^2*d^2 + 10*a*c*d^3 + 7*a*d^4)*cos(f*x + e) + (15*a*c^4 + 40*a*c^3*d + 42*a*c^2*d^2 +
 24*a*c*d^3 + 7*a*d^4 - (15*a*c^2*d^2 + 10*a*c*d^3 + 7*a*d^4)*cos(f*x + e)^2 + 2*(15*a*c^3*d + 10*a*c^2*d^2 +
7*a*c*d^3)*cos(f*x + e))*sin(f*x + e))*sqrt(-d/(a*c + a*d))*arctan(1/2*sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e
) - c - 2*d)*sqrt(-d/(a*c + a*d))/(d*cos(f*x + e))) - 4*sqrt(2)*(a*c^4 + 4*a*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 +
 a*d^4 - (a*c^2*d^2 + 2*a*c*d^3 + a*d^4)*cos(f*x + e)^3 - (2*a*c^3*d + 5*a*c^2*d^2 + 4*a*c*d^3 + a*d^4)*cos(f*
x + e)^2 + (a*c^4 + 2*a*c^3*d + 2*a*c^2*d^2 + 2*a*c*d^3 + a*d^4)*cos(f*x + e) + (a*c^4 + 4*a*c^3*d + 6*a*c^2*d
^2 + 4*a*c*d^3 + a*d^4 - (a*c^2*d^2 + 2*a*c*d^3 + a*d^4)*cos(f*x + e)^2 + 2*(a*c^3*d + 2*a*c^2*d^2 + a*c*d^3)*
cos(f*x + e))*sin(f*x + e))*log(-(cos(f*x + e)^2 - (cos(f*x + e) - 2)*sin(f*x + e) + 2*sqrt(2)*sqrt(a*sin(f*x
+ e) + a)*(cos(f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3*cos(f*x + e) + 2)/(cos(f*x + e)^2 - (cos(f*x + e) + 2)
*sin(f*x + e) - cos(f*x + e) - 2))/sqrt(a) + 2*(9*c^3*d - 15*c^2*d^2 + 3*c*d^3 + 3*d^4 + (7*c^2*d^2 - 6*c*d^3
- d^4)*cos(f*x + e)^2 + (9*c^3*d - 8*c^2*d^2 - 3*c*d^3 + 2*d^4)*cos(f*x + e) - (9*c^3*d - 15*c^2*d^2 + 3*c*d^3
 + 3*d^4 - (7*c^2*d^2 - 6*c*d^3 - d^4)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a))/((a*c^5*d^2 - a*c
^4*d^3 - 2*a*c^3*d^4 + 2*a*c^2*d^5 + a*c*d^6 - a*d^7)*f*cos(f*x + e)^3 + (2*a*c^6*d - a*c^5*d^2 - 5*a*c^4*d^3
+ 2*a*c^3*d^4 + 4*a*c^2*d^5 - a*c*d^6 - a*d^7)*f*cos(f*x + e)^2 - (a*c^7 - a*c^6*d - a*c^5*d^2 + a*c^4*d^3 - a
*c^3*d^4 + a*c^2*d^5 + a*c*d^6 - a*d^7)*f*cos(f*x + e) - (a*c^7 + a*c^6*d - 3*a*c^5*d^2 - 3*a*c^4*d^3 + 3*a*c^
3*d^4 + 3*a*c^2*d^5 - a*c*d^6 - a*d^7)*f + ((a*c^5*d^2 - a*c^4*d^3 - 2*a*c^3*d^4 + 2*a*c^2*d^5 + a*c*d^6 - a*d
^7)*f*cos(f*x + e)^2 - 2*(a*c^6*d - a*c^5*d^2 - 2*a*c^4*d^3 + 2*a*c^3*d^4 + a*c^2*d^5 - a*c*d^6)*f*cos(f*x + e
) - (a*c^7 + a*c^6*d - 3*a*c^5*d^2 - 3*a*c^4*d^3 + 3*a*c^3*d^4 + 3*a*c^2*d^5 - a*c*d^6 - a*d^7)*f)*sin(f*x + e
))]

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^3} \, dx=\text {Timed out} \]

[In]

integrate(1/(a+a*sin(f*x+e))**(1/2)/(c+d*sin(f*x+e))**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^3} \, dx=\int { \frac {1}{\sqrt {a \sin \left (f x + e\right ) + a} {\left (d \sin \left (f x + e\right ) + c\right )}^{3}} \,d x } \]

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^3,x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) + c)^3), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 559 vs. \(2 (214) = 428\).

Time = 0.43 (sec) , antiderivative size = 559, normalized size of antiderivative = 2.32 \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^3} \, dx=\text {Too large to display} \]

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^3,x, algorithm="giac")

[Out]

1/8*sqrt(2)*(sqrt(2)*(15*c^2*d + 10*c*d^2 + 7*d^3)*arctan(sqrt(2)*d*sin(-1/4*pi + 1/2*f*x + 1/2*e)/sqrt(-c*d -
 d^2))/((c^5*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - c^4*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - 2*c^3*d^2*sgn(c
os(-1/4*pi + 1/2*f*x + 1/2*e)) + 2*c^2*d^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + c*d^4*sgn(cos(-1/4*pi + 1/2*f
*x + 1/2*e)) - d^5*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*sqrt(-c*d - d^2)) + 4*log(sin(-1/4*pi + 1/2*f*x + 1/2*
e) + 1)/(c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - 3*c^2*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + 3*c*d^2*sgn(c
os(-1/4*pi + 1/2*f*x + 1/2*e)) - d^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))) - 4*log(-sin(-1/4*pi + 1/2*f*x + 1/2
*e) + 1)/(c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - 3*c^2*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + 3*c*d^2*sgn(
cos(-1/4*pi + 1/2*f*x + 1/2*e)) - d^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))) + 2*(14*c*d^2*sin(-1/4*pi + 1/2*f*x
 + 1/2*e)^3 + 2*d^3*sin(-1/4*pi + 1/2*f*x + 1/2*e)^3 - 9*c^2*d*sin(-1/4*pi + 1/2*f*x + 1/2*e) - 8*c*d^2*sin(-1
/4*pi + 1/2*f*x + 1/2*e) + d^3*sin(-1/4*pi + 1/2*f*x + 1/2*e))/((c^4*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - 2*c
^2*d^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + d^4*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*(2*d*sin(-1/4*pi + 1/2*f
*x + 1/2*e)^2 - c - d)^2))/(sqrt(a)*f)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^3} \, dx=\int \frac {1}{\sqrt {a+a\,\sin \left (e+f\,x\right )}\,{\left (c+d\,\sin \left (e+f\,x\right )\right )}^3} \,d x \]

[In]

int(1/((a + a*sin(e + f*x))^(1/2)*(c + d*sin(e + f*x))^3),x)

[Out]

int(1/((a + a*sin(e + f*x))^(1/2)*(c + d*sin(e + f*x))^3), x)